Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 14(1): 9174, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649495

This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.


Food Preservation , Food Storage , Oncorhynchus mykiss , Phycocyanin , Animals , Food Storage/methods , Oncorhynchus mykiss/microbiology , Oncorhynchus mykiss/growth & development , Food Preservation/methods , Phycocyanin/pharmacology , Antioxidants/pharmacology , Plasma Gases/pharmacology , Seafood , Food Packaging/methods
2.
BMC Plant Biol ; 24(1): 59, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38247007

Applying cold discharge plasma can potentially alter plants' germination characteristics by triggering their physiological activities. As a main crop in many countries, soybean was examined in the present study using cultivars such as Arian, Katoul, Saba, Sari, and Williams in a cold argon plasma. This study has been motivated by the importance of plant production worldwide, considering climate change and the increasing needs of human populations for food. This study was performed to inspect the effect of cold plasma treatment on seed germination and the impact of argon plasma on microbial decontamination was investigated on soybeans. Also, the employed cultivars have not been studied until now the radicals generated from argon were detected by optical emission spectrometry (OES), and a collisional radiative model was used to describe electron density. The germination properties, including final germination percentage (FGP), mean germination time (MGT), root length, and electrical conductivity of biomolecules released from the seeds, were investigated after the plasma treatments for 30, 60, 180, 300, and 420 s. The decontamination effect of the plasma on Aspergillus flavus (A.flavus) and Fusarium solani (F.solani) was also examined. The plasma for 60 s induced a maximum FGP change of 23.12 ± 0.34% and a lowest MGT value of 1.40 ± 0.007 days. Moreover, the ultimate root length was 56.12 ± 2.89%, in the seeds treated for 60 s. The plasma exposure, however, failed to yield a significant enhancement in electrical conductivity, even when the discharge duration was extended to 180 s or longer. Therefore, the plasma duration of 180 s was selected for the blotter technique. Both fungi showed successful sterilization; their infectivity inhibition was 67 ± 4 and 65 ± 3.1%, respectively. In general, the cold plasma used for soybeans in the present study preserved their healthy qualities and reduced the degree of fungal contamination.


Glycine max , Plasma Gases , Humans , Argon , Decontamination , Germination , Plasma Gases/pharmacology
3.
Microsc Res Tech ; 87(5): 896-907, 2024 May.
Article En | MEDLINE | ID: mdl-38149754

Photocatalytic disinfection of Escherichia coli suspension by silicon dioxide nanoparticles and silicon dioxide/gold nanocomposite in a batch reactor is investigated experimentally and results are compared. Silica nanoparticles were synthesized by Stöber method and pulsed laser ablation method was employed to prepare gold nanoparticles in distilled water. Composition of two nanoparticles species was carried out, using the second harmonic pulse of Nd:YAG laser, whose wavelength is in the absorption spectra of gold nanoparticles. Results confirm a decrease in the bandgap energy of silica nanoparticles after composition. Escherichia coli were selected as an indicator of the microbial water contamination. Disk diffusion method was used to evaluate the antimicrobial potential of SiO2 and Au@SiO2 nanostructures. Photocatalytic activities of both nanostructures were examined in dark, and under the irradiation of UV and visible light. In all conditions, the performance of Au@SiO2 nanocomposites was higher than SiO2 nanoparticles. In dark condition the higher biocidal nature and activity of Au nanoparticles and for the case of UV radiation, decreasing the bandgap energy and recombination rate of SiO2 nanoparticles after composition with Au increased the efficiency. For the case of visible light radiation, surface plasmon resonances effects, and local heat of Au nanoparticles were responsible for increasing the efficiency. RESEARCH HIGHLIGHTS: Doping large bandgap semiconductors nanostructures, such as silica with metal nanoparticles, such as gold will improve their photocatalytic activity to work in visible light. In this mechanism, gold nanoparticles act as effective traps to prevent the recombination of photogenerated electron-hole pairs. Other mechanisms, such as Schottky barrier formation, surface plasmon resonance absorption of gold nanoparticles, and biocidal nature of the gold nanoparticles are effective in increasing the efficiency of Au doped silica nanostructures.

4.
ACS Appl Mater Interfaces ; 15(41): 48785-48799, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37647519

The challenging environmental chemical and microbial pollution has always caused issues for human life. This article investigates the detailed mechanism of photodegradation and antimicrobial activity of oxide semiconductors and realizes the interface phenomena of nanostructures with toxins and bacteria. We demonstrate how oxygen vacancies in nanostructures affect photodegradation and antimicrobial behavior. Additionally, a novel method with a simple, tunable, and cost-effective synthesis of nanostructures for such applications is introduced to resolve environmental issues. The high-voltage, high-current electrical switching discharge (HVHC-ESD) system is a novel method that allows on-the-spot sub-second synthesis of nanostructures on top and in the water for wastewater decontamination. Experiments are done on rhodamine B as a common dye in wastewater to understand its photocatalytic degradation mechanism. Moreover, the antimicrobial mechanism of oxide semiconductors synthesized by the HVHC-ESD method with oxygen vacancies is realized on methicillin- and vancomycin-resistant Staphylococcus aureus strains. The results yield new insights into how oxygen ions in dyes and bacterial walls interact with the surface of ZnO with high oxygen vacancy, which results in breaking of the chemical structure of dyes and bacterial walls. This interaction leads to degradation of organic dyes and bacterial inactivation.

5.
Sci Rep ; 13(1): 6518, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37085689

Due to the large number of industrial applications of transparent conductive oxides (TCOs), this study focuses on one of the most important metal oxides. The RF-magnetron sputtering method was used to fabricate NiO thin films on both quartz and silicon substrates at room temperature under flow of Argon and Oxygen. The sputtered samples were annealed in N2 atmosphere at 400, 500, and 600 °C for 2 hours. Using the AFM micrographs and WSXM 4.0 software, the basic surface parameters, including root mean square roughness, average roughness, kurtosis, skewness, etc., were computed. Advanced surface parameters were obtained by the Shannon entropy through a developed algorithm, and the power spectral density and fractal succolarity were extracted by related methods. Optical properties were studied using a transmittance spectrum to achieve the optical bandgap, absorption coefficient, Urbach energy, and other optical parameters. Photoluminescence properties also showed interesting results in accordance with optical properties. Finally, electrical characterizations and I-V measurements of the NiO/Si heterojunction device demonstrated that it can be used as a good diode device.

...